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A relativistic theory is developed to study the growth of weak discontinuities 
propagating in a chemically reacting fluid mixture. The velocity of propagation 
is determined, which fully agrees with classical results in the nonrelativistic 
limit. The growth equation for the wave propagation in relativistic fluid flows 
with nonequilibrium effects is obtained and solved. The wave amplitude is 
determined as a function of time. The relativistic and relaxation effects on the 
global behavior of the wave amplitude are studied analytically. It is concluded 
that if the wave is of a compressive nature and its initial amplitude is greater 
than a critical value, then the discontinuity grows until it develops into a shock 
wave after a finite critical time t c. But on the other hand if the initial wave 
amplitude is less than the critical one, the wave decays and damps out 
ultimately. It is shown that both relativistic and relaxation effects help in 
stabilizing the wave propagation by increasing the critical time t c for the 
breakdown of the wave due to nonlinear steepening. 

1. I N T R O D U C T I O N  

The classical fluid flow theory based on  the postulates of thermody-  
namic  equi l ibr ium may  not  be applicable to a flow field in which the 
densi ty and  pressure of indiv idual  f luid species change rapidly. For  rapidly 
changing external condi t ions  the concent ra t ions  of the various species in  a 
fluid mixture are no  longer func t ions  of pressure and  densi ty alone,  bu t  
they require an addi t ional  in terna l  t he rmodynamic  variable as an indepen-  
dent  parameter  of the re laxat ion process. With  the advent  of flights at very 
high speeds scientists are taking keen interest in  s tudying the effects of 
relaxat ion processes in relativistic f luid flow theory. The relativistic theory 
of propagat ion  of weak discont inui t ies  and  shock waves in  a perfect gas 
has been  extensively s tudied by Z u m i n o  (1957), C o b u r n  (1961), Saini 
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(1961), Kanwal (1966), and McCarthy (1969). Grot  (1968) discussed wave 
propagation in nonlinear elastic media. Eckart (1940) and Taub (1948) 
provided the theoretical foundation of relativistic shocks. The shock rela- 
tions in relativistic magnetohydrodynamics were presented by Lichnero- 
wicz (1967). Recently Ram (1978) studied nonequilibrium effects on the 
breakdown of weak shocks. But the relaxation effects in the case of growth 
of discontinuities in relativistic fluid flows with varying internal structure 
do not appear to have been investigated. However, the study of the rates of 
chemical reactions is a complex and difficult science which is still in an 
incomplete state of development. We shall limit ourselves to homogeneous 
reactions in a perfect gas mixture in which the usual macroscopic con- 
servation equations for nonviscous, nonconducting, and nondiffusing flow 
are applicable. For  simplicity, we shall allow for only one nonequilibrium 
process of chemical reactions and neglect all photoreactions that depend 
on radiation. The main object of the present communication is to study 
such effects, and to determine the criterion for the formation of shock. 

2. P R E L I M I N A R I E S  

Let V 4 be an Einstein-Riemann space defined by four coordinates 
x ~ = ( x i ,  x4), where x i are the Cartesian coordinates of a material point in 
three-dimensions and x 4 = ct, i = 1, 2, 3, and c is the constant speed of light 
in vacuum. Let a metric ds 2= g~zdx~dx  1~ be defined on V 4 with signature 
( +  + + - )  and constant components given by 

g ~ = g~B, g ~/= g/j = 8~, g44 = g44 = - 1 

The range of Latin indices is 1,2,3 and that of Greek indices is 1,2,3,4.  
The world velocity is defined by 

(vk) 
U'~(xJ')=fl ---~-,1, U ' ~ U ~ = - I  (2.1) 

where 

( vkv /1 2 
v k = c  f l=  1-- 

Ox 4' c: ] 

The invariant derivative of any function ff(x a) can be expressed in the 
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form 

DtP=---U'~I"'~= c I Ot ' ] (2.2) 

where q~ is the material derivative of ~p in classical mechanics. 
In the subsequent analysis we shall restrict ourselves to homogeneous 

reactions in a mixture of perfect gases in which macroscopic conservation 
equations for nonviscous, nonconducting, and nondiffusing flow are appli- 
cable. For simplicity, we shall allow for only one nonequilibrium process 
of chemical reactions and exclude all photochemical reactions that depend 
on radiation. The basic equations governing relativistic flow of a chemi- 
cally reacting gas mixture under above-mentioned simplifying assumptions 
are (Saini, 1976) 

where 

(pu-),o =0 (2.3) 

T%P=0 (2.4) 

D q  = f l  w ( p , s , q )  (2.5) 
r 

T "~p = (o~ + p )  U"U ~ +pg'~a 

and a comma followed by an index denotes covariant differentiation. Here 
T '~a, p, p, r s, and q, respectively, represent the energy momentum tensor, 
the scalar pressure, the mass density in the rest frame, the proper energy 
density, the entropy, and the relaxation parameter. 

From (2.3), (2.4), and (2.5) we get 

Dp+oa}U; +a}( , - f & + p q ) D q = O  

p o D U "  + - ~  S~Pp,# =0  

where 

h 
a =  1 .+ S '~ = U~'UB + g '~p, 

C 2 

1 
T D S  = Dh - - D p  + ~Dq 

P 

(2.6) 

(2.7) 
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and a~=(~p/Op)s,q is the square of the frozen speed of sound, h(p ,s ,q)  is 
the enthalpy of the fluid mixture, and ~ is the affinity of internal transfor- 
mation. 

Let Z(x ") be a moving singular surface in the Einstein-Riemann 
space with parametric equations x ~ = ~p~(bl,b 2, b3), where b l, b2,b 3 are the 
curvilinear coordinates on the timelike hypersurface Z(x~). Let N~ be the 
components of the unit normal vector to Z(x~); then we have 

where 

N~Na = 1, N~ = f l (n  i, - G / c ) ,  N ~ = fl(n i, G/c)  (2.8) 

n i are the components of the unit normal to a space-time surface S(t)  in 
our rest frame and G is the speed of propagation of the moving surface 
S(t). From (2.1) and (2.8) we have 

V =  U~N~ = - f l f lGo/  c (2.9) 

where Go= G - v i n i  is the local speed of propagation of the surface S(t). 

3. VELOCITY OF PROPAGATION 

A timelike hypersurface Z(x~), across which the flow field variables 
are continuous, but their first and higher derivatives undergo finite jumps, 
is defined as a weak discontinuity. The compatibility conditions for a 
discontinuity can be expressed in the form (Truesdell and Toupin, 1960, 
pp. 492-498) 

[ Z.~] = BN~ + g~/sa**x~[ Z] . ,  (3.1) 

[ Z,,,p] = B N ~ N  B + 2N(~xrp) (B ,r+b~ x ~ X % ) ( A , r o - b r o B )  (3.2) 

where 

A=[Z]=Z,-Zo, oAN~ 
= p br, - g,,ox.rN.~, 

1 1"__  TO ot 
i(o ) = + go a 
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In consequence of the compatibility condition (3.1) and the identity 

a ~'x:x~ = g '~ - N~N B 

we have 

where 

[ DZ] = V[ Z ~ N  ~] + 6 [ Z ]  

567 

(3.3) 

V~, + p~ '~N,~ = 0 (3.5) 

lie = 0  (3.6) 

Vl~ + paT~ ~N~ + aTp q Ve = 0 (3 .7)  

poV~ ~ + 1 m v ~ S ~  = 0 (3.8) 
c-  

Since ~ 4=0, we have 

p = [ p , t ~ ] N  3, e = [ q , o ] N  t~, p=[p , t~]N ~ 

and the jump in the reaction rate function w(p,s,q) across the weak wave 
is zero. Solving the equations (3.5)-(3.7) we get 

I �9 = af~ = - p X a ~ / V ,  ~ =  ~aN,~ (3.9) 

Eliminating from (3.8) and (3.9) we have 

[ oV2c2-(1 + V2)a}] X=0  

v2= (3.1o) 
,, - 4 / c 

where 

8[Z]=U"[Z ,~ , ] -VN~[Z~]  

Here 8[Z] is the generalized form of the 6 t derivative of Thomas (1957). In 
the local instantaneous rest frame we have 

c s [ z ]  = t728,[z] (3.4) 

Using the jump conditions (3.1) in (2.3), (2.5), (2.6), and (2.7), we get 
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From (2.9) and (3.10) we get an expression for the speed of propagation G o 
in the form 

G02= 4 (3.11) 
fl2B2( o -  a] / c2) 

In the instantaneous rest frame the equation (3.11) reduces to G2o=a~/o, 
which fully agrees with the earlier results of Ram (1978) and McCarthy 
(1969) as particular cases of this result. 

If the medium is in a uniform state ahead of the wave front and if the 
motion is studied in the rest frame of this uniform state, then the speed of 
propagation G o is a constant. 

4. T H E  G R O W T H  EQUATION 

In this section we shall derive a fundamental equation which governs 
the growth and decay of weak discontinuities in relativistic gas flows with 
noneqnilibrium effects. We assume that the wave is propagating into a gas 
at rest and of constant state. From the equations (3.8) and (3.9) we get 

X a t x ~  
l + V 2  N$ 

where ~r* - ~,~r �9 ,~ - ~, ~,~ are the spacelike components of N ". Now we define the 
amplitude b of the wave E(x ~') by the relation 

b = c a = c a  N a = c a  N 2 

Differentiating (2.6) and (2.7) with respect to x/~ and taking jumps 
across the wave front with the help of (3.1) and (3.2) and simplifying we 
get 

poc2VX~N~ + (1 + V2)/~ + V8(/x) + poc28(~) 

+ p pc ( + 4 /  2o4 

o 2 2(-o 2 a x )  
V~+6(tt)+att+----~ a i x ,N~xg '+pa i l+  , a N,~ l + V 2  

(4.1) 

V 2 V & a = o  (4.2) 
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where 

X'~ = [ U%v]NBN ~' , g=[P,  tlv]NttN v 

1 'i"~/., 

Here ~2 is the mean curvature of the moving wave surface Y(x v) and F is 
the effective heat exponent given by 

o4 
F = l + p  0p 

Like all other thermodynamic variables F is a function of p,s,q and 
coincides with the adiabatic heat exponent y for an ideal gas. Eliminating 
/~ and X~N~ between (4.1) and (4.2) with the help of (3.10) we obtain 

2 o -  a2 -~2 )6(~) + ~( fla2c :PqopOW 

3+ / 
C 2 C 2 -- ~2VX,,N*x,~=O 

2V~2 / 1+ V 2 
1 + V 2 ] c2V 2 a~ 

(4.3) 

fl-- 1, f l=(1 + V2) 1/2, N~* =(1 + V2)'12(ni, O), Go=aflo 112 

In consequence of (4.4)the equation (4.3) assumes a simple form 

A db 1-"~ + (A2-  Q)b + A3 b2--O 

(4.4) 

(4.5) 

which is the fundamental differential equation governing the growth and 
decay of a weak discontinuity. 

Assuming the fluid to be in a uniform state before the arrival of the 
wave front and choosing the frame of reference to be the rest frame of this 
uniform state, we have 
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where 

b = cA, ~1 = Got 

1 (  a ~ ) ( l _  a l l  -3/2 
A l= 2o-- --~ ~ z ] 

a 2 \ - 1/2[ 2 ) aY~ Y 1 - ae 
l I 

A3= 1 (1_  a~ )- t /2[ 3a~\ 
2ao '/2 oc-- S ~(F + 1 ) o -  - -~ - )  

Here a I and a e represent sound speed in the frozen state and the 
equilibrium state of the fluid, respectively, ~" is the relaxation time, and 
represents the distance traversed by the wave in time t. All parameters  
involved in A 1, A 2, and A 3 have been evaluated at the wave front. The 
mean curvature of the wave surface can be written in the form (Thomas, 
1963) 

~2 = rio - Ko~ (4.6) 
1 - 2f~ort + Kort 2 

where 

rio = �89 (K1 + K2), K o = K, K 2 

Here K i and K 2 are the constant principal curvatures of the initial wave 
front. The solution of (4.5) is of the form 

where 

( So )-' 1 A~ ~F(~')~' 
b( 'q)--F(r / )  ~ + "~1 

F(~I) = e-a~/A'(1 -- 2~o'0 + Ko~ 2) - O/2)A, 

5. GLOBAL B EHAVIOR  OF A D I S C O N T I N U I T Y  

The wave amplitude b can also be expressed as a function of time in 
the form 

+ - 1  
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where 

O( t ) =e-A'a~ ( l -- KIGot )( I - K2Got ) ] -(I/Z)A, 

The wave geometry also plays an important  role in the global behavior of 
the wave. If K 1 and K 2 are positive in the case of converging waves with 
curved surfaces, there are two possibilities. If the initial wave amplitude 
b(0) is negative in the case of a compressive wave and numerically less 
than a critical value b c given by  

), 
b~ = -~3 ~( t') dt' (5.2) 

where t* is the least positive root of the equation 

(1 - K ! Got)(1 - KEGot ) = 0 

then the wave surface will form a caustics at a finite time t*. When b(0) is 
numerically greater than be, then the wave amplitude becomes infinite at a 
finite critical time to<t* at the cusp of intersecting characteristics, and 
consequently a weak shock will become a strong shock due to nonlinear 
steepening as a result of infinite flow gradients. In the case of diverging 
wave surfaces, K 1 and K 2 are both negative, and therefore the solution 
(5.1) is valid for the whole interval (0, oo) except in the case of 

A1 oo - 1  

~ 

When the condition (5.3) is not satisfied, the wave amplitude will decrease 
and the wave will be damped  out ultimately. On the other hand if the 
condition (5.3) is satisfied, the nonlinear effect leads to steepening and 
consequently a breakdown occurs, which results in a shock formation after 
a finite time t c given by 

fo%( r) dt'= A,/[ A31b(O)l] (5.4) 

In the case of a plane wave front the solution (5.1) reduces to a simple 
form 

A 1 e x p ( - A 2 G o t / A , ) ] )  -1 (5.5) b ( t ) = e x p ( - A z G o t /  , 1 ( ~ - ~  A3 

which fully agrees with the classical gas dynamic result of Ram (1978) in 
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the nonrelativistic limit. The critical value b~ of the initial wave amplitude 
and the critical time tc are given by 

2 2 
0 a y / a e - - 1  

b~ = -- (5.6) (r+ 1 ) o - 3 a 7 / c  2 

( 4(l_a /4)(l_4/oe2) log 1 - - -  

where ~- is the relaxation time. 

bc )-l (5.7) 
Ib(0)l 

It is clear from (5.6) and (5.7) that if we neglect the relaxation effect, 
b c vanishes. This shows that in equilibrium flows all compressive dis- 
turbances will grow into a shock wave, whereas in nonequilibrium flows 
there exists a critical line b(0)=bc below which all compressive dis- 
turbances will die out. The critical time t~ increases with relaxation and 
relativistic effects. This implies that in relativistic flows of chemically 
reacting fluids both relativistic and relaxation effects help in checking the 
growth of weak discontinuities. The relaxation process of internal transfor- 
mation due to chemical reactions either disallows the shock formation or 
delays it (Ram, 1978). In the absence of nonequilibrium effects the critical 
time t c can be expressed in the form 

[2(,/- l)+(3-7)a2e/C2][ (y -  I)+ a~/c z] 
t~= [ (,/_ l)+(2_,l)a2e/CZ][ (r + l)(3,_ l + a2e/C2)_3(7_ l)a2e/C= ] 

which shows that t c increases with relativistic effects. 
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